Role of grain-to-grain contacts on profiles of retained colloids in porous media in the presence of an energy barrier to deposition.
نویسندگان
چکیده
Deposition of 36-microm gold-coated hollow microspheres in two porous media (glass beads and quartz sand, 710-850 microm) was examined using X-ray microtomography (XMT) in the presence of an energy barrier to deposition under fluid velocity conditions representative of engineered filtration systems. XMT allowed examination of the deposition at different locations at the grain surfaces (deposition at grain-to-grain contacts versus single-contact deposition). We demonstrate that in the presence of an energy barrier to deposition, grain-to-grain contacts strongly influence colloid deposition and the spatial distribution of retained colloids in porous media. This result contrasts drastically with observations in the absence of an energy barrier to deposition, where consistency with filtration theory was observed. In the presence of an energy barrier, colloids were dominantly retained at grain-to-grain contacts, and the concentration of retained particles varied nonmonotonically with transport distance. It is proposed that the nonmonotonic profiles resulted from translation of surface-associated microspheres and subsequent immobilization at grain-to-grain contacts. This hypothesis is demonstrated using a conceptual model. The mutability and sensitivity of retained profiles to system conditions (from hyper-exponential to nonmonotonic) may reflect the interplay of different deposition mechanisms under different conditions.
منابع مشابه
Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition
This paper examines the non-perturbed deposition and re-entrainment dynamics of biological and non-biological colloids in porous media in the presence of an energy barrier to deposition at the grain surface. Deposition and re-entrainment rate coefficients were determined from numerical simulation of breakthrough–elution behavior and the profiles of retained colloids. We present composite trends...
متن کاملOn colloid retention in saturated porous media in the presence of energy barriers: The failure of a, and opportunities to predict h
[1] This contribution reviews recent findings that illuminate the processes governing colloid retention in porous media under environmentally relevant conditions. In the environment, colloids act as conveyors of contaminants, or even as contaminants themselves; however, despite decades of research, we are unable to accurately predict the retention of colloids in granular aquifer media under env...
متن کاملPore-scale observation of microsphere deposition at grain-to-grain contacts over assemblage-scale porous media domains using X-ray microtomography.
The prevalence of colloid deposition at grain-to-grain contacts in two porous media (spherical glass beads and angular quartz sand, 710-850 microm) was examined using X-ray microtomography (XMT) under conditions where the colloid-grain surface interaction was solely attractive (lacking an energy barrier to deposition), and under fluid velocity conditions representative of engineered filtration ...
متن کاملColloid retention in porous media: mechanistic confirmation of wedging and retention in zones of flow stagnation.
A three-dimensional particle tracking model for colloid transport in porous media was developed that predicts colloid retention in porous media in the presence of an energy barrier via two mechanisms: (1) wedging of colloids within grain to grain contacts; (2) retention of colloids (without attachment) in flow stagnation zones. The model integrates forces experienced by colloids during transpor...
متن کاملHysteresis of colloid retention and release in saturated porous media during transients in solution chemistry.
Saturated packed column and micromodel transport studies were conducted to gain insight on mechanisms of colloid retention and release under unfavorable attachment conditions. The initial deposition of colloids in porous media was found to be a strongly coupled process that depended on solution chemistry and pore space geometry. During steady state chemical conditions, colloid deposition was no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental science & technology
دوره 40 12 شماره
صفحات -
تاریخ انتشار 2006